Aerospace Research Center

8

,
Z ’
—

BIRKHOFF NORMALIZATION PROCESS PROGRAM
FOR
TIME-DEPENDENT HAMILTONIAN SYSTEMS

GPO PRICE $

by
> CSFT! PRICE(S) $

M BN BN EY BN BN En G
bEZ15

W. Fine and S. Kass

Hard copy (HC) _‘__ Mathematics Department
Microfiche (MF) ‘

~ -

ff 653 July 65
o d for public
1. This document has bf:fﬁprfto;oen isunlimited.
release and sale; it7 arstmiy
AFOSR Scientific Report No. AFOSR - 68-0875
This research was supported in part by the
AF Office of Scientific Research of the
= Office of Aerospace Research, under contract
2 "é\ .§_ AF49 (638) 1466; in part by the NASA
= TR

Marshall Space Flight Center under contract
NAS 8 - 20062; and in part by the NASA

~

/-

Goddard Space Flight Center under contract
& NAS 5 - 9350.
May. 1968
AEROSPACE RESEARCH CENTER
GENERAL PRECISION SYSTEMS INC.

KEARFOTT GROUP
LITTLE FALLS, NEW JERSEY

v T o~

- 1 4

{ACCESSION NUMBER)
(PAGES)
-
{NASA CR OR TMX OR AD NUMBER)

709 WHO4 ALIIOVE

— N68-

y

WA WY

-

20 \0

AT
I

L.

e
(YAl
/4a<”:



L} .
PO

Aerospace Research Center

BIRKHOFF NORMALIZATION PROCESS PROGRAM
FOR
TIME-DEPENDENT HAMILTONIAN SYSTEMS

by

W. Fine and S. Kass
Mathematics Department

AFOSR Scientific Report No. AFOSR - 68-0875

This research was supported in part by the

AF Office of Scientific Research of the
Office of Aerospace Research, under contract
AF49 (638) 1466; in part by the NASA
Marshall Space Flight Center under contract
NAS 8 - 20062; and in part by the NASA
Goddard Space Flight Center under contract

NAS 5 - 9350.
May 1968
AEROSPACE RESEARCH CENTER
GENERAL PRECISION SYSTEMS INC,

KEARFOTT GROUP
LITTLE FALLS, NEW JERSEY



AEROSPACE RESEARCH CENTER ¢ GENERAL PRECISION SYSTEMS INC.

Abstract

This is a complete documentation of a computer program for analyzing finite time stability
properties of equilibrium points of time-dependent (nonconservative) Hamiltonian systems.
Using this package, approximate analytic solutions which contain nonlinear effects can be
constructed near these equilibrium points. Qualitative rate-of-growth estimates can also
be obtained. This program description is a sequel to "Birkhoff Normalization Process Pro-
gram for Time-Independent Hamiltonian Systems", AFOSR Scientific Report No. AFOSR
67-0123 (October, 1966) which contained the program description for analyzing time-inde-

pendent Hamiltonian systems.

Eleven programs constitute the complete package. The first six programs perform the second
order normalization and the next three apply the Birkhoff technique for higher order norma-
lizations. These nine programs compute the generating functions and coordinate transforma-
tions for a time-dependent Hamiltonian in the neighborhood of an equilibrium point. The
remaining two programs evaluate actual trajectories for the particular application under
consideration. The first of these evaluates the trajectory for the normalized Hamiltonian
and the second performs a point by point integration of the equations of motion of the given

dynamical system.

The computer program developed here has been used to generate an algebraic solution for

the motion of a particle near an equilibrium point of the planar elliptical restricted three-
body problem. Sufficient time-dependent and nonlinear terms have been retained to produce
trajectories which match solutions obtained by numerical integration of the equations of
motion for 30 days or longer. Computation time for the normalized trajectory is insignificant
compared to the time required for numerical integration. Sources of truncation and round-off

errors in the normalization process are identified.
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[. INTRODUCTION

The study of stability properties of solutions of nonlinear dynamical systems presents serious
mathematical difficulties. For this reason, early investigations of the stability of the tri-
angular equilibrium points or libration points of the circular restricted three-body problem
of celestial mechanics were limited to the linear case, or the first approximation [17.

This is true also in more recent studies of the elliptical restricted three-body problem*
[2,3,4]. Unfortunately, the behavior of these and many other interesting nonlinear
systems cannot be predicted from the linear analysis, but depends on the nature of the
nonlinear terms. Theoretically, stability can be decided by the construction of a Liapunov
function [5], but there is no straightforward way to construct such functions for arbitrary

dynamical systems.

Considerable progress in the qualitative theory of nonlinear dynamical systems has been
made following Kolmogorov in 1954, notably by V.l. Arnold and J. Moser. In 1962,
Leontovich (6] applied a theorem of Arnold to establish the stability of the triangular
libration points of the planar circular restricted three~=body problem for almost all admissible
mass ratios. Very recently, Deprit and Deprit-Bartholomé [7] have applied results of
Moser to refine Leontovich's results. Corresponding work in the elliptical problem has not

appeared in the literature.

G.D. Birkhoff [8] established in 1927 a quantitative method for determining stability
properties of equilibrium points and periodic solutions of Hamiltonian systems. He showed
that by an infinite series of steps, the differential equations can be transformed into an
integrable system of equations, whose solution may be transformed into the original variables
to determine the behavior of solutions near the given equilibrium point or periodic solution.
Qualitative rate-of-growth information may also be obtained from this method. In imple-
menting Birkhoff's "normalization" process, one carries out only a finite number of steps,

of course. Accordingly, the solution obtained is that for a differential system approximating

*Known also as the reduced three-body problem.
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the original Hamiltonian system. Even so, using contemporary symbolic manipulation
techniques and high speed digital computers, it is practical to retain enough nonlinear
ferms in the normalizaiion process so that accurate solutions are obtained, valid over long
time intervals. Thus the Birkhoff normalization technique is a means to analyze, in a
quantitative way, finite-time stability properties of nonlinear dynamical systems, without

recourse to numerical integration and its attendant errors.

The Birkhoff normalization process is applicable to:

Study of *rajectories near an equilibrium point of a conservative Hamiltonian system.

Study of trajectories near an equilibrium point of a nonconservative Hamiltonian
system hoving a periodic Hamil*onian function.

In a conservative Hamiltonian system, study of trajectories near a periodic
trajectory which lie on a surface having the same energy as the given

periodic trajectory.

The planar circular restricted three-body problem is a conservative Hamiltonian system
with equilibrium points, and we have applied the Birkhoff normalization process to that

system [97 in an earlier study.

This report describes the application of the Birkhoff normalization process to a nonconserva-
tive Hamiltonian system with a periodic Hamiltonian function and equilibrium points. In
the nexi two sections, we will describe in detail the implementation of the Birkhoff
normalization process for an arbitrary Hamiltonian function of this type. We will then
consider specifically the planar elliptical restricted three-body problem, and its triangular

libration point L4.,
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I[I. NORMALIZATION PROCEDURES

The normalization procedure is applied to time~-dependent Hamiltonians expanded about an

equilibrium point which is also the origin of coordinates. In this form, the Hamiltonian is
H = Ho(f) + Ha(x,y,f) + ...+ Hn(x,y,f) toie.e , (. mn

where Hn is a homogeneous polynomial of degree n in the conjugate vector x,y, with
coefficients having period 27 in t. As Ho('r) plays no role in the analysis, we will not

consider if. A Hamiltonian is considered normalized to a finite order when it has the form

Hix,y,t) = Ha {(Xj + )’j) ' (x: + )’:) coe ] + Hb [XIYIt]‘ (11.2)

For small values of the state variable (x,y) the higher homogeniety portion, Hb can be

dropped resulting in

H~H

a

where the exact solution for Hq exists and is an harmonic oscillator for each pair of
conjugate variables. The chief requirement of the normalization procedure is to find
canonical coordinate transformations that will take the original Hamiltonian (ll.1) and

put it in the form of (11.2). These required transformations fall into two separate categories,
where the first normalizes the Hamiltonian to second order [10]

w W
H(XIYIt) = 2_1 (Xj + )’j) + f (X: + )’:) Teoot Hb(xi),lt) (“03)

and the second systematically normalizes the Hamiltonian to higher orders by a repeated

application of Birkhoff's normalization procedure [8].

II.1 2nd Order Normalization

Each of these categories will be discussed separately starting with second order normaliza-

tion. Let us represent a linear Hamiltonian system of dimension 2n with a periodic time

w
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dependency by
w = Alw, At + 2m) = A(t) . (11.4)

Then there exists a canonical change of variables

w = P()z, P(t + 2m) = P(t) , (11.5)

such that
z = Bz, (11.6)

where B is a constant matrix, if the characteristic exponents associated with (11.4) are

distinct.

By Floguet theory, [10], the fundamental matrix @ (t) of (I1I.4) with ®(0) =1, can be

represented as

®(t) = P@) exp (Bt) , (1.7)

where

1
and

P(t + 2m) = P(t) ..

The change of variables (I1.5)gives (11.6). As the characteristic exponents of our system
are distinct, it can be shown, [117, that there exists an S such that

w1l

ST'BS = D ,

where D is diagonal. Furthermore, as we have a Hamiltonian system, the eigenvalues of

D are W peeesW =W geee,=@ . By applying the linear, canonical change of variables

w = P(t)Sr ,
where

r' =P, pa.9,) and wo= (y)

‘
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it follows readily that the equations defined by H take the form
f=Dr +... . .

Thus in the new variables, we have, by a linear transformation to real form

w
Boo 68 v a®) + o2 62 rad) +
_Tpl ql sz qz e .

Equations (11.8) are now integrable if terms of degree two and higher are neglected. This
linear approximation is good over some fixed finite time interval if we restrict ourselves to

a sufficiently small neighborhood of the equilibrium point.

iI1.2 Higher Order Normalization

The next step in the analysis is to consider the higher order normalization procedure. We

assume that H has been normalized up to degree s - 1 and introduce a canonical trans-

8)

formation from the old variables (x,y) to new variables (£,7n) generated by a generating

function W(S) (xl, Y2 VA NEPR ,nn), a homogeneous polynomial of degree s. The
transformation is given (implicitly) by
aW(S)

& %" am

aw®)

Yi:"i+’a_xi' y

(

The idea is to choose W s) (that is, the coefficients of the polynomial) in such a way that
as many s-th order terms as possible are eliminated in the new Hamiltonian. If

r (51, ceerb s M sees ,'r)n) is the new Hamiltonian, we have

(1.9

H( + W(S) . BW(S)) = Tx + _a_V_Y_fS) + é\_N_(S) )
xl,...xn,T)1 a— ,...,nn a)(n X1. 3 Al "'""Xn ann ,nl .,T)n
1

We expand both sides in Taylor series and find
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32H aw®® aw®

n
H(xll.‘.xn’nl.“nn) +i= —77}' aXi + f-! i:? ani aT)J, Bxi BXJ + oeeen
s
(11.10)
O o AU NS - VACH VAN
ARl M i=] ox, an. 21 =1 d9x, &x . an. on,
i g1 1 i J

We now write H and I' as sums of homogeneous polynomials:

H= x4, r= 50
n=2 n=2

We equate terms of like degree in (11.10) and find

. : ‘
H(I) (xl,...,xn,nl,...,‘nn) = P()(xl,...,xn,‘nl,...,nn) , 1=1,2,...5=1,

so that the new Hamiltonian is normalized up to order s-1 since it was assumed that H
was. Equating terms of degree s in (11.10), we have
(a ) dW (S) N I‘ (S) . n ar\ (2) BW(S)

(s) n 3H
AR o,

Bxi 1= 6xi a'ni
In view of (11.3), this can be written

(s) (s)
._%]: w, (n %Z-V X %\1/7_\/ )- ré e (#r.7m
i= 1 i i

When coefficients of like terms are compared in the last equation, we obtain a system of
linear equations in the coefficients of W(S) with unspecified non~homogeneous terms since

I‘(S) is not known. It turns out that for s odd, the matrix of this system is non-singular if

n
Z]} w, ki # o for integers k with o< T |I<i | £ N, so that the system can be solved
'Z
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with an arbitrary non-homogeneous term, i.e. we can find a W(s) so that (11.11) is satis-
fied with 1"(5) = o. For even s the matrix does turn out to be singular. In this case, we
can determine W(s) so that (1. 11) is satisfied with 1.,(5) a polynomial of degree s/2 in
the variables (x:a + ‘nla) with known coefficients. Thus the new Hamiltonian is normalized
up to order s. The higher order terms in T" are then found by coefficient comparison in

(11.10), since now W(s) is known.

The following flow diagram of Figure 1 illustrates the process used for higher order

normalization.
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HIGHER ORDER NORMALIZATION FLOW DIAGRAM

Hamiltonian "H" Normalized to
Order (1S-1).
Select Terms from "H" of Homogeneity Less than or

Equal to (IS-1). Lable This Series "G".

Determine Generating Function "W" and New
Hamiltonian of Homogeneity (1S). Lable This

Series "C".

!

Add I|Cll fO IIGII.

N =N+ 1

If N> Maximum Homogeneity The

Process is Complete.

v

Using "H", "G" and "W" and The Taylor Program,

Obtain New Hamiltonian of Homogeneity "N".

FIGURE 1
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111. NUMERICAL IMPLEMENTATION

In general, the Hamiltonian in the neighborhood of a periodic solution may be represented

in the form
v
Hey ) = ) Ly,
X t =Z a Xq a0 X
sy s Vir eoer Yy : n 71 n
V1+"'+v2n=2

where the coefficients are periodic functions of time. The first step in the normalization
process is to reduce the periodic matrix of the linearized system derived from the Hamiltonian
to a constant matrix in real normal form. The resulting Hamiltonian then has the form

o v, Vh Vn+1 Van

0w 2 3
H(x/)’,f)=2 7'(xi ty; )+ ZQUI Xy eeeXo o Yyoeee Y

i=1

which is suitable for higher order normalization.
The following programs are used to automate the entire process for both the second order and

higher order normalizations.

I11. 1 Symbolic Technique

Throughout the programs a special technique is used for the handling of series terms or
matrix elements which are series. Three arrays(NC1, C1, IC1) are used to completely
specify either condition.
1) NC1 - Used to identify the number of terms in the series or in the matrix element.
2) C1 - Contains the coefficients of each term in the series,

3) IC1 - Logical definition of each term where the description variable is in

packed form by bit designation. This term may appear in either of

two forms:
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1. 7 exponential and one time term, i.e.:

7
KT I o TE R Y

k=1

which is expressed in packed form as

35 34 33 .es 28 27-23 22-20 cee 7-5 .. 4+
I J1 Ja‘ Jv K1 Ka K,'7. | KT
where

0, |
7= c rea
1, ¢ imaginary .
KT = exponent of the time term.

0, for positive exponential time dependence

J =
1, for negative exponential time dependence,
k=1, ;7

Kk = positive integer, less than or equal to 31,
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2, one exponential and six spatial terms, i.e.

6
C(TT "U‘) expc(-l)JKf, v=v/-1
k=1

which is expressed in packed form as

35 34 33-25 24-21  20-17 16-13 12-9 8-5 4-1

I J K L L L L L L

0, ¢ redl

1, c imaginary

0, for positive exponential time dependence

1, for negative exponential time dependence.

K = positive integer, less than or equal to 63.

Lk= exponent of space coordinate X r k=1, ...,6.

11
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itl. 2 Program Descriptions

Program No. 1

This program determines the system of linear differential equations associated with the

Hamiltonian as well as computing its matrix of eigenvectors.

The functions performed by the program are as fol lows:
1. Select the second order terms from the original Hamiltonian and set up linear differential

equations in matrix form:

X =‘A(t)X

or

v+1, { odd

t-1, Leven, (=1, ...,n,
where n is the number of dependent variables, n < 6 .

2. The coefficient array A(t) is separated into discrete exponential orders of time.

A(t) is a matrix containing four exponential and no spatial terms.

A(t) = A0) + A(T) + ...+ A(N)

-1
3. C and C . are found where the transforrhation of coordinates is

X=CY ,

where Y represents the coordinates in which A(0) is diagonal, and C s the

12
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Program No. 1 (continued)

matrix of eigenvectors of A(0) where C-] A(0) C diagonalizes A(0).

4. The matrix B = C-] A(t) C s also computed.

Supporting Subroutines

1. AMAT 12. LINMAT
2. COMIN 13. MATIO
3. COMOP 14. MATMUL
4. CONV 15. MATOPI
5. DCUBIC 16. MATPRT
6. DQRTIC 17. PROOT
7. EIGEN 18. SERDET
8 EIGVAL 19. SERIO
9. EIGVEC 20. SEROP
16, IDEIRT 21. SEROPI
|1 IDENTI 22. SERPRT
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Input
1. NIP(), 1=1,72 - Print control where | represents the subroutine number.
2. NH - Number of terms in the time-dependent Hamiltonian series.
0, Series is in the form of 1 exponential and 6 spatial terms,
3. ISET(2) =
1, Series is in the form of 7 exponential and 1 time term.
4. H - Coefficients of the Hamiltonian series.
5. IH - Logical definition of a term in the Hamiltonian series. The following terms are
used for this description:
a) 0, coefficient c is real
| =
1, coefficient ¢ is imaginary
b) 0, for positive exponential time dependence
J =
1, for negative exponential time dependence
c) K- Integer multiplying the time in the exponential.
d) Lk- Exponent of the kth spatial coordinate, k=1, . . ., 6.

Printed Output
1. NH

H input Hamiltonian series.
[H
2. XLAM Eigenvalues of the A(0) array.
3. NAM
AM A(t) array. Matrix type is 7 exponential and one time term.
IAM
4. NBM
BM Constant B array. Matrix type is 7 exponential and one time term.

IBM
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NCM Eigenvector array C. Matrix type is 7 exponential and one
CM time term.

ICM

NCIM

CIM Inverse of the eigenvector matrix.

ICIM

Punched Output

1.

NAM

AM A(t) array. Matrix type is 7 exponential and one time term .

1AM

NBM

BM Constant B array. Matrix type is 7 exponential and one time term.
IBM

NCM Eigenvector array C, Matrix type is 7 exponential and one time

CM term. Each element is in complex form.
ICM '
NCIM

CIM Inverse of the eigenvector matrix.

ICIM
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Program No. 2

This program solves the linear system resulting in the characteristic matrix & ().
The linear differential equation
Y=BMY,

where B(0) is a constant diagonal matrix with imaginary diagonal elements, is solved in

symbolic form, yielding the matrix (YM). Each element in B can be expanded in a Fourier

series, so that

B = B(0) + B(1) + B(2) ....

The following recursion technique is used to obtain the solution:

Y(1) = B(0) Y(1)
Y(2) = B(0) Y(2) + B(1) Y(1)
Y(3) = B(0) Y(3) + B(1) Y(2) + B(2) Y(1)

Y(NORD+1) = B(0) Y(IORD+1) + B(1)Y(NORD) + ..

A 4

where NORD = number of recursion steps permitted after solution of the first linear equation.

The ith column of (YM) represents the i th independent solution.

A general solution for Y is

Y =(YM)D,

where D is a constant mairix.
The solution for X in the original equation,
X =A)X,

X =CY =C(YM)D.

17
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Program No. 2 (continued)

At time zero, (YM) is the identity matrix and it is desirable to have X become the identity

- -1
matrix. Accordingly, we set D =C ]. Then &(t) = C(YM)C

As an example of the results obtained by this procedure the following two-dimensional

problem is solved up to first order.

- -2.35i .04ie+“-1 - -
RZ + 056t "y
b - 077" -2.35i o
2 I st | L2
The solution for the characteristic matrix @ (t) is;
[ 2.34it _ . it _ 0108 &* it g2+ 35it |
+.05ie+“ e+2.5if +.0108 e+2.35if
Q)=
_ 0189171, *2: 350t | og 2351t
|+ o1a91672 35 g et 2 |

Each column of & (t) represents an independent solution for the Y vector.

Due to the excessive storage requirements necessary for the recursion process, various arrays

were stored on the Univac FH880 drumiin the form of simulated scratch tapes.

18
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Program No. 2

Supporting Subroutines

CONV
IDENT
IDENT4
MATIO
MATOP
. MATPRT

o U AW -

Input

1. NIPG) 1=1,72

2. NBM
BM
| BM

3. NCM
CM
ICM

4, NCIM

CIM
ICIM

5. NORD

Printed Output

1. NBM
BM
| BM

2. NCM
CM
ICM

e GENERAL PRECISION SYSTEMS INC.

7. SDIH
8. SEROP
9. SEROM
10. SERPRT
11. SINT
12, YMAT

Print control where | represents the subroutine
number,

B array from Program No. 1.

Eigenvector array C from Program No. 1.

C_] from Program No. 1.

Order to which the recursive solution for YM
in subroutine YMAT is to be computed.

Input matrix from Program No. 1,

Input eigenvector matrix from Program No. 1.

19
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Program No., 2

Printed Qutput (continued)

3. NCIM
CIM
ICIM

4. NYM

YM
iYM

5. NPHIM

PHIM
IPHIM

Punched Output

1. XLAMA() ,1=1,13

2. NPHIM

PHIM
IPHIM

Input inverse of the eigenvector matrix from
Program No. 1.

YM Array identified in previous description.

Characteristic matrix - & (t) .

Diagonal elements of the BM matrix.

&(t), Matrix type is 7- exponential and one time term.
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Program No. 3

By Floquet theory the characteristic matrix &(t) is defiried as:

& (1) = P(t) e

where P(t) is the periodic coordinate transformation matrix and B is a real constant matrix

defined as

1
B=5 log, &(2n) .

The following mathematical procedure is used to evaluate the logarithm of a real matrix:
a) Find the eigenvector matrix C of the & (2 ) mairix as well as the inverse of
C, denoted by Cl .
b) Form the complex diagonal matrix D =Cl* A#» C

c) Take the logarithm of the principal values of the diagonal elements in the D matrix.

The elements of D are in the form x + Ly which is converted to

Re"9 ,0s6<2m.

+

Le=|oge R+(:9 .

G =|oge R e
d) The desired matrix is C- G+ Cl, i.e.

B=-2]—" C[loge(e" &2m)C)c

Now P(t) =&(t) e-B'r
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Program No. 3 evaluates

B =B = 5 ot (S1°B°9)

st -,

where S is the eigenvector matrix of B , and Sl denotes the inverse of S

Supporting Subroutines

1. COMIN 14. MATLOG

2. COMOP 15. MATMUL

3. CONV 16. MATOP

4. DCUBIC 17. MATPRT

5. DQRTIC 18. PROOT

6. EIGEN 19. SERDET

7. EIGVAL 20. SERNUM

8. EIGVEC 21. SEROP

9. EMAT 22, SEROP

10. IDENT 23. SERPRT

11. IDENT

12. LINMAT

13. MATIO

Input

1. NIP@),1=1,72 Print control where | represents the
subrountine no.

2. XLAM(@) ,1=1,3 Eigenvalues of &(t) matrix from
Program No. 2.

3. NPHIM &(t) array from Program No. 2.

PHIM
[PHIM

23
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Printed Output

1. XLAMG) ,i1=1,3 Eigenvalues of characteristic matrix & (t)
from Program No. 2.

2. NPHIM &(t) matrix from Program No. 2.

PHIM

IPHIM
3. XLAME(l) ,1=1,3 Eigenvalues of exponential array E(t) .
4. NEM E(t) array .

EM

IEM
5. BB Real constant matrix B described in program

description.

6. BLAM Eigenvalues of the constant B matrix.
7. CB Eigenvector of the constant B matrix.

Punched Output

XLAM Described in printed output.
XLAME

EM

BLAM

CB

1
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AEROSPACE RESEARCH CENTER e GENERAL PRECISION SYSTEMS INC.

Program No. 4

This program performs the multiplication of &(t) - and E(t) to produce the periodic mafrix

P(t) , and expands the matrix. P(t) in a Fourier series. The resultant series is periodic with

period 27 .

Supporting Subroutines

1. CONV 7. SDIF
2. |DENT 8. SEREX1
3. IDENT{ 9. SERNUM
4. MATIO 10. SEROP
5. MATOP 11. SEROPM
6. MATPRT 12. SERPRT
13. SINT
Input
1. NIP1),1=1,72 Print control where | represents the

subroutine number.

2. XLAM(@J), J=1,3 Eigenvalues of the & (t) array from
Program No. 3.

3. XLAME() ,J=1,3 Eigenvalues of the E(t) array from
Program No. 3.

4. NPHIM & (t) array from Program No. 2. Matrix
PHIM type is 7 exponential and one time term.
IPHIM

5. NEM E(t) array from Program No. 3. Matrix
EM type is 7 exponential and one time term.
IEM




AEROSPACE RESEARCH CENTER

Program No. 4

Input (continued)

6.

NEX

Printed Output"

1.

NEX

XLAM

NPHIM
PHIM
IPHIM

XLAME

NEM
EM
1EM

NPM
PM
IPM

Punched Output-

1.

NPM
PM
IPM

GENERAL PRECISION SYSTEMS INC.

Degree of expansion maintained in
generation of the periodic matrix P(t) .

Degree maintained in the periodic matrix

expansion.

Eigenvalues of the & (1) matrix.

Characteristic matrix &(t) from Program No.2.

Eigenvalues of the exponential array E(t) .

Exponential array E(t) from Program No. 3.

Periodic matrix P(t) .

Periodic matrix P(t). Matrix type is one

exponential and 6 spatial terms.

27
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AEROSPACE RESEARCH CENTER ¢ GENERAL PRECISION SYSTEMS INC.

Program No. 5

This program determines the transformation necessary to put the constant portion of the
second order terms in real normal form. The result of this program is a matrix T (t)
representing the total transformation from the original form to real normal form.

The detailed functions that are performed are:

1.
2,

The matrix DEL which preserves the canonical property is obtained.

The matrix RNF that transforms a complex normal Hamiltonian into real normal

form is obtained.

The resultant transformation T (t) that normalizes the Hamiltonian to second

order is found:

T()=P(t) - CB-. DEL - RNF

Supporting Subroutines

—
.

3.

CANMAT
COMOP
CONV
IDENT
IDENTI
MATIO

NIP(l), I1=1,72
NPM

PM
IPM

CB

Printed Output

1.

NPM
PM

IPM

DEL

RNF

7. MATMUL

8. MATOP

9. MATPRT
10. SEROP
11. SERPRT

Print control where | represents the subroutine number.

Periodic transformation matrix P (t) from Program No. 4.

Matrix of eigenvectors of the B array from Program No. 3.

Input periodic matrix P (t) from Program No. 4.

Matrix which preserves the canonical property.

Matrix which transforms a complex normal Hamiltonian
into real normal form.

29
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Printed Output (cont'd)

4. NTM
™
IT™

Punched Output

NTM
™
IT™

Resultant transformation matrix T (t).

Total transformation matrix. Matrix type is one
exponential and 6 spatial terms.
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AEROSPACE RESEARCH CENTER e GENERAL PRECISION SYSTEMS INC.

Program No. 6

The functions performed by this program are as follows:

1. The Z series is obtained where the coordinate transformation that removes time
dependence from second order terms is

X=T{MtZ.

2. The above linear transformation is substituted into the original Hamiltonian and
yields a Hamiltonian normalized to second order in real normal form.

3. The old variables X are obtained in terms of the new variables Z and the new
variables Z are obtained in terms of the old variables X.

Supporting Subroutines

1. COMIN 9. MATMUL
2. COMOP 10. MATOP
3. CONV 11. MATPRT
4. IDENT 12. SERIO
5. IDENTI1 13. SERNUM
6. LINMAT 14. SEROP
7. LINTRA 15. SERPRT
8. MATIO 16. STRAN
input
1. NIP(), I=1,72 Print control where | represents the subroutine number.
2. ISET (4) Maximum time order carried.
3. NH Original Hamiltonian.
H
IH
4. NTM Linear time dependent coordinate transformation from
.Ir'?/f\\/\ Program No. 5.

Printed Output

1. NH Initial Hamiltonian series.
H
IH

2. NTM Total transformation matrix T (t) from Program No. 6.
™
ITM
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Printed Output (cont'd)

3. NG
G
IG
4. NG
G
IG
5. NH
H
IH
6. NH
H
iH
Punched Output
1. NG
G
IG
2. X
3. Z

New Hamiltonian normalized to second order.

New Hamiltonian after trivial second order terms
have been removed.

Old coordinates X expressed in terms of the new
coordinates Z.

New coordinates Z expressed in terms of the old
coordinates X.

New Hamiltonian normalized to second order.

Old coordinates in terms of the new coordinates Z.

New coordinates in terms of the old coordinates.




97 €892 4

..... o e i o e e e o e g P gy e ey e ey g ey 1 0 TR Y NIRRT S EI A REZE N AN IR ECUE N BRI HEEN BEEE o kil s
ard 1{3[s' M
) (RSN REEIRTN) 1A e g 8 ¢ T1FB
R»CO;DUC:C%_VmN 0L 9 09 (17 0S Sy oy 4% 0of 114 174 (41 [i] %4 1
Lo INIWILY NY 2] d3anwnN
ION3NOIS Ls Nvaly0d ZliNawaivis
HONNd J1va YIWWYIOO¥d
¥3AWNN O¥1D3 12 QUVD JIHAV¥O
40 19vd SNOILDNALSNI ONIHONNG 9N wy¥o0ud
SNONOD FIYL4SONAY

NY04 9NIQOD NVHLYOA %@%Wa_wm%%%_ S

¥ILNID HOAY3ISIY




AEROSPACE RESEARCH CENTER ¢ GENERAL PRECISION SYSTEMS INC.

Program No. 7

This program computes the generating function necessary to normalize the Hamiltonian to
the next higher order. A basic requirement of the normalization process is the expansion

of polynomials by Taylor series. In particular, consider the expansion about (x, y) of

Aly + 32)

where "A" and "B" are series and "x" and "y" are portions of the total coordinate

state vector, This series is given by

m mgf”ndif a"A 3B 3B
n=¥ 1(1)=1 |(|Z1:)=] ﬂyl(])]...afyl(n)] B[xl(])] lel(n)]

where "m" is the order of the expansion and "ndif" is the number of components of the
"x" vector. An additional constraint on the formulation of the expansion is that there is
a need for only a portion of the total expansion, namely one homogeneity level, so this

must be selected without the computation of the entire result.

As an example consider,

A= + 2. eOf x? xg xg xg
+3 Ot 2 1 0 0
. e X, X, Xq X4
+ 4. eof X xg xg xi
+5 Ot 3 2 0 0
. e X X5 X4 X4 ,
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0 0
B= +3 eof x: xg Xg Xy
0 0
+ 10. eot x? x; Xq Xy
with X =y = x
1(1) 1(1) 1
12 - 1@ T X2
1) ~ 1) T 3
The resulting series of homogeneity 4 is
C= + 42. eOf x: xg xg xi
+ 20. eOf x? xg xg xi
+18 Ot 3 1 0 0
. e X7 %, Xq Xy
Ot 4 0 0 0
+ 3. e X X, X3 Xy
+18 0t 0 4 0 0
. e Xy Xy Xq Xy

The new Hamiltonian is also evaluated in the new coordinates, i.e.

dinate transformation.

Consider as an example, the series

_ . =3it 2 0 0 1

H(x],xz, Xar x4) = + 2i e X3 X5 Xq Xy
+3it 1 0 0 2

+3 e X1 X Xa X4

and consider the transformation defined by

a basic series coor-
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X3y = +3i
+5
Xo =+ 1
xg = +3i
+5
xg = +3i
+5

In the new coordinates,

ﬁ(yu Y2r Yar Ya) = +54

=it 1
e

2it 2

e

Oit 0

e

-3it 0

e

2it 0

e

-3it 0

e

e

-90 i

-180 i
-300
-150
+250i
- 81i
-270
+225i
-135
+450i

+375

2it 0

-12it
e
~7it
e
=7it
e
-2it
e
~2it
e
+3it
e
=6it
e
-lit
e
+4it
e
-lit
e
+4it
e

+9it
e
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This process is repeated until the desired level of normalization is achieved. The time de-

pendent Hamiltonian used for input must be normalized to second order.

Supporting Subroutines

1.

2
3
4.
5

GEN
IDENT
IDENT{
NORMf
SERIO

Input

1.

2
3.
4

NiP{i;, i=1,72

INORM
MAXHOM
NH

H

iH

Printed Output

1.

2
3.
4

INORM
MAXHOM
OMEGA
NH

H

iH

NW

W

iw

NG

G

IG

6. SEROP
7. SERPRT
8. STRAN
9. TAY1
10. TAY?2

Print control where | represents the subroutine number.
Normalization level of the initial Hamiltonian.

Maximum order to which the Hamiltonian will be normalized.

initial Hamiltonian normalized to second order or higher.

Normalization level of input Hamiltonian, usually 2.
Maximum order to which the Hamiltonian will be normalized.

Constants multiplying the second order terms in the input Hamiltonian.

Input Hamiltonian.

Generating function for Hamiltonian normalized to one higher order.

Hamiltonian normalized to higher order.
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Punched Output

1. NW
w Generating function for the Hamiltonian normalized to one higher
Iw order.
2. NG
G Hamiltonian normalized to one higher order.
IG

39
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AREROSPACE RESEARCH CENTER ¢ GENERAL PRECISTON SYSTEMS INC.

Program No. 8

This program reduces the generating functions to simple coordinate transformation series.

The result of the Birkhoff normalization process is a sequence of generating functions which
are time dependent polynomials dependent upon combinations of the old and new variables.
In order to make direct use of these results in the area of trajectory prediction, the gen-
erating function must be operated on so as to produce independent series relating the old
variables to the new ones and vice versa. This operation, known as an inversion, consists
of a set of substitutions designed to evaluate one homogeneity level of the desired series

at a time. The substitution is continued until the maximum order of the series is achieved.

As an example, consider the following generating function;

W= 1Xn® + 1XPn

where X,Y are the old variables and ¢,m are the new variables. Inversion of function
W up to third order results in the following four series:

X o]

i

1620° - 2¢™n* - 162n° +4r P + 630> + 2¢°0°
Y = 1£%0 + 280t + £ - 4pin® - 267}
£o= IXAY® o+ 2XPYR o+ IXPYO - 2XiYR - 4xPYR

n = IXOYY - 2XMYD + 6X1Y? + 4X2Y! + 2X°v@

4]
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Supporting Subroutines

1. IDENT 5. SEROP
2. IDENTi 6. SERPRT
3. INVER 7. STRAN
4. SERIO
Input
1. NIiP@), 1=1,72 Print control where | represents the subroutine number.
2. NHMAX Maximum homogeneity retained in the series representing
coordinate transformations.
ISET(4) Maximum time level carried.
4. NwW
w Generating function from Program No. 7.
%%

Printed Output

1. NHMAX Maximum homogeneity retained in the series representing the
coordinate transformations.

2. Nw
\i Generating function from Program No. 7.
%%

3. NS
S Old coordinates X in terms of new coordinates Z .
IS

4. NS
S New coordinates Z in terms of old coordinates X .
1S

Punched Output

1. X Old coordinates in terms of new coordinates.

2. Z New coordinates in terms of old coordinates
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AEROSPACE RESEARCH CENTER e GENERAL PRECISION SYSTEMS INC.

Program No. 9

This program combines the individual coordinate transformations into one total transformation.

Supporting Subroutines

1. IDENT 4, SEROP

2. IDENTI 5. SERPRT

3. SERIO 6. STRAN

Input

1. NIP@),1=1,72 Print control where | represents the

subroutine number,

2. N Number of components in the state vector,

3. NSUB Number of individual transfarmations to
be combined.

4. NHMAX Maximum homogeneity to be retained.

5. X individual coordinate transformation series
relating the old variables to the new.
From Program No. é and Program No. 8.

6. Z Individual coordinate transformation series

relating the new voriables to the old. From
Program No. 6 and Program No. 8.

Printed Output

1. N Number of components in the state vector,
2. NSUB Number of individual transformations to be
combined .



AEROSPACE RESEARCH CENTER ¢ GENERAL PRECISION SYSTEMS INC.

Program No. 9 (continued)

3. NHMAX Moximum homogeneity retained ,

4, NX Initial X codrdinates.
X
1X

5. NZ Initial Z coordinates .
Z
1Z

6. NY Combined X coordinate transformation,

Y
1Y

7. NY Combined Z coordinate transformation .
Y

Ny
Punched Output

1. X Totaled old coordinates in terms of the
' new coordinates ,

2, Z Totaled new coordinates in terms of the old
coordinates,
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AEROSPACE RESEARCH CENTER e GENERAL PRECISION SYSTEMS INC.

Program No. 10

This program numerically evaluates the solution of the normalized Hamiltonian equations,

solved symbolically.

The Z coordinates (57./ , ni) are evaluated after first calculating the initial values

£, = 6730 cos (XLAM)i t+1n,

10 sin (XLAM)

, t
[2

The X coordinates are then evaluated at a specific value of .

Supporting Subroutines

1. HAMNUM 4. SERIO
2. IDENT 5.  SERNUM
3. IDENTI 6.  SERPRT
Input
1. NIP(I), I=1,72  Print control where | represents the subroutine number.
2. NV Number of components in the X vector.
3. NT Number of time points into which the total time is divided.
4. TT Total problem time.
5. XOC(I) Initial condition for the ?lf—h component.
6. XLAM Three eigenvalues of the linear system
7. NX
X X coordinates.
IX
8. Nz
Z Z coordinates.
1z

47
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Printed Output

1. NV Number of components in the X vector.
2. NT Number of time points into which the total time is divided.
3. 17 Total time.
4. XOC(l) Initial condition for the 1th component .
5. XLAM Three eigenvalues of the linear system.
6. NX
X X coordinates.
IX
7. NZ
Zz Z coordinates.
1Z
8. DR X coordinates numerically evaluated at each time point.
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AEROSPACE RESEARCH CENTER e

Program No, 11

This program numerically integrates the differential equations of a time~dependent Hamiltonian

GENERAL PRECISION SYSTEMS INC.

system. A Runge-Kutta numerical integration procedure is used.

Supporting Subroutines

1. EQUAT
2, IDENT
3. IDENTI
4. RKI

Input
1. NIP(E), t=1,72

2. NV
3. NT
4. NC
5. 1T
6. XOC(I)
7. NH
H
iH

Printed Output

T. NV
NT
NC
TT
XOC(l)
NH
H
H

SERIO
SERNUM
SEROP
SERPRT

0 N O O

Print control where | represents the
subroutine number.

Number of components in X vector.

Number of time points into which the total
time is divided.

Number of integration cycles between print
points .

Total time.

initial condition of the i th component.

Hamiltonian series

Input data.




AEROSPACE RESEARCH CENTER

Program No. 11 (continued)

Printed Output

2. XDOT

3. X

GENERAL PRECISION SYSTEMS INC.

Print-out of derivatives of H.

Print-out of X coordinates evaluated at
time points.
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AEROSPACE RESEARCH CENTER + GENERAL PRECISION SYSTEMS INC.

11.

12,

13.

14.

3 Subroutines

Routine

AMAT

CANMAT

COMIN
COMOP
CcOonNV

DCUBIC

DQRTC

EIGEN
EIGVAL

EIGVEC

EMAT

EQUAT

GEN

HAMNUM

Description

Transforms a Hamiltonian system into a set of time dependent linear
differential equations. The linearity of the differential equations

is assured by using only the 2nd order terms in the Hamiltonian.

Evaluates the matrix which is used in the coordinate transformation
of a Hamiltonian to preserve the canonical property in the new

variables.

Finds the inverse of a complex matrix using a Gaussian reduction

technique.
Performs basic complex arithmetic such as multiplication, division.
Transforms a series into a matrix element or vice-versa.

Obtains the roots of a cubic polynomial equation where the

coefficient of X3 is 1.

Obtain the roots of a quartic polynomial equation where the

- 4,
coefficient of X " is 1.
Finds the eigenvalues and eigenvectors of a real matrix.
Finds the eigenvalues of a complex matrix.

Finds the eigenvectors of a complex matrix when the eigenvalues

are available.

Evaluates the exponential array E(f) which is used to multiply the

characteristic matrix.
Determines derivatives for the Runga=Kutta routine.

Determines the generating junction of order IS for a Hamiltonian
of order 1S-1. The IS homogeneity part of the new Hamiltonian

is also computed.

Performs the numerical evaluation of the X and Z coordinates af a

specified time value.
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15.

16.

17.

18.
19.
20.
21,
22,

23.

24,

25,

26.
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Routine

IDENT

IDENTI

INVER

LINMAT
LINTRA
MATLOG
MATMUL
MATIO

MATOP

MATOP1

MATPRT

NORMI

Description

Identifies series terms from the logical definition variable or forms
the logical definition from specified bit variables. The terms must

be of the form: 6 spatial and 1 exponential term,

Same description as IDENT but must be used for variables of the form

7 exponential, O spatial and 1 time term.

Accepts generating functions in terms of x and 71 and performs an
inversion of variables to obtain £and 7; in terms of x and y or
vice-versa.

Solves a linear system of equations of the form AX =B,

Performs a linear transformation of the spatial coordinates in a series.
Finds the logarithm of a real matrix.

Multiplies two complex matrices.

Punches or reads a matrix where each element is a series.

Performs matrix operations on square mairices where each element
is a power series. Performs addition, subtraction, multiplication,
and transfer from one array to another. Each element must have

terms in the form specified by IDENT,

Performs matrix operations such as addition, subtraction, multiplication,
transfer, and selection of a particular time dependent order. Each

element must have terms in the form specified in IDENTI.
Prints out a matrix where each element is a series.

Determines a Hamiltonian normalized to order 1S when a
Hamiltonian normalized to order 1S-1 is available. The generating
function relating the old variables to the new variables is also

included in the output.



27.

28.

29.

30.

31.

32,

33.
34.

35.

36.

37.

38.
39.

Routine

PROOT
RK
SDIF1
SERDET
SEREX]1
SERIO

SERNUM
SEROP

SEROP1

SERPRT

SINTI

STRAN
TAY1

Description

Finds the roots of a polynomial with real coefficients.

Performs a Runga-Kutta integration.

This subroutine differentiates a series of the form - 7 exponential,

0 spatial, and one time term.

Finds the determinant in series form of a matrix in which each
element is a series.

Performs a Fourier expansion of a series containing non-
commensurate eigenvalues. The resultant series is periodic

with a period of 2 .

Punches or reads in a series.

Computes the numerical value of a series at a specified time point.
Performs basic power series operations such as addition, subtraction,
multiplication, transfer, selection of particular homogeneity,
truncation up to a particular homogeneity , and differentiation.
Each term is of the form - 6 spatial and one exponential term.
Performs basic power series operations such as addition, subtraction,
multiplication, and transfer. Each term is of the form 7 exponentials,
0 spatial , and one time term.

Prints out a series in a format that resembles the actual mathematical
form.

Performs the integration of a series of the form - 7 exponential,

0 spatial and one time term, from time zero to time T.

Performs series transformations for Program 9.

Generates one expansion series of the Taylor expansion where the

expansion term has the following form:

m ndlf ndif 3"A 3B 3B
oY |(1) ] I(E 3113 +ee 3] a[xl(;.[ atxl(n)l
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Routine
40. TAY2
41, YMAT

Description

Generates the entire series of a particular type of Taylor expansion.
The resulting series is composed of terms which all have the same
homogeneity .

A Taylor expansion of the following form is considered:

dB
A(x,y + Sx—) where A and B are power series.
3B .
The orderof-—a—x- must be higher than the order of y.

Solves the linear time-dependent differential equation of the form

Y =BY where B can be expanded in a Fourier series of the form:

B=B(0)+B(1)+B(2)+....-



IV APPLICATION TO ELLIPTICAL RESTRICTED THREE-BODY PROBLEM

IV.1 Moadel Description and Related Equations

The frame of reference for the planar elliptical restricted three-body problem is a rectan-
gular coordinate frame that rotates about its origin at the same speed as that with which the
Earth and the Moon move in elliptical motion about their barycenter. The origin of this
coordinate frame will represent the Earth-Moon barycenter, and these two masses, which
will be designated m and m_ respectively, will be fixed in the coordinate frame if a
unit of length is defined to be the distance which separates the Earth and the Moon. The

equations of motion of a body m_ of insignificant mass in this coordinate system are [2]:

-0y = 1 U
y l1+ecost 9x
y+2x = 1 ’

1+ecost -57

where the potential function is

1-m m ] 2 2
U= + + 5 (X7 +y°)
pol poz 2 '
m
m= — =2
m +m !
1 2

P and p _ are the distances between the body m_ and the massive bodies m and m
oL o? o 1 2

respectively, measured in units of the distance between the two massive bodies, e is the

eccentricity of the elliptical motion of m_ relative to m , and dots denote differentia-
1

tion with respect to the independent variable t, which here represents the true anomaly

of the elliptical motion of m_ about m . If we introduce the variables u=x -y ,
1

v=y+x , the equivalent Hamiltonian system of equations is
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x= o
ou
Sl
4 ov
o =-3H
ox
g =-oH
ay
with the Hamiltonian
1
H=%(X2+)’2)+%(U2 +V2)+(U)"XV)' m U(X, y) .

The origin is translated to the equilibrium point L4 by the linear transformations:
x=%—m+q,y=—+q,u=-—+p,v=%-m+p .
1 2 2 2 1 2

The Hamiltonian in the neighborhood of the equilibrium point L4(q =q =P =p = 0)
1 1

becomes:
—_1 /2 2 1 ¢.2 2 1
=% + + + + - -
H =3 (IO1 P) ﬁ(el1 qa)+ P -a P) " Toocest B(q)
where B(g) = Im pL +3(q° +q (l—2m)+qz +/3 q, +m -m+ 1]
1 1

ol oY)
where p and p are the distances between the body m_ and the massive bodies
o1 oz o

m and m respectively.
1 2

In implementing the numerical procedures, this Hamiltonian was expanded in a Taylor
series through the fifth order of homogeneity. This series in turn was expanded in exponen-
tial form (eik)‘ " to the second degree =0, + 1, + 2) in terms of the true anomaly

t . The Hamiltonian contained, after the expansion, a total of 94 terms.

In starting the 2nd order normalization the expanded Hamiltonian is truncated to second
order. The truncated Hamiltonian for the reduced three body problem is:

H = 0.1244348731q° - 0.626695381q° +1.0p q -1.0q p
1 2 1 2 1 2

+ 0.5p° +0.58° -0.126939203q q

1 : 2 1 2

-it

]
+ [ 0.0002825634q” - 0.0003476903” - 0.0009550517 g q21[e2” +
1

+ [0.01029375¢° +0.03088125qz +0.34792411q q J[e' | +e
1 1 2

e-2|f]



IV.2 Parameters and Trajectories

The accuracy of the solution obtained by normalization is affected by three parameters —
the order of normalization N, the number of steps in the recursive solution for the charac-
teristic matrix P(t), and the highest degree k retained in the Fourier expansion of the
transformation matrix P(t). This latter parameter appears also in the expansion of the
Hamiltonian in terms of the independent variable t (true anomaly), but there we always
retain terms through the second degree in k, as mentioned in section IV.1. A suitable
choice of parameters is selected on the basis of acceptable accuracy of solutions, consis-
tent with computational capability of the digital computer that is used. To attempt to
normalize the Hamiltonian to 5th or 6th order, with many steps in the recursive solution
for @ and many terms retained in the Fourier expansion for P(t), would require too much
core space on a computer, even for the UNIVAC 1108 which we use. Accordingly, we
judiciously selected, after preliminary investigation, certain combinations of pcromef;rs.
We then compared the resulting solutions with the trajectory obtained by numerically in-

tegrating the same Hamiltonian equations which yielded the "normalized" solutions.

At the outset, it became apparent that two recursive steps are necessary and also sufficient
in the solution for the characteristic matrix ® . It is also necessary to retain some t-de-
pendent terms in the Fourier expansion for P. That is, we must have k>0 . To ignore
this time dependence is equivalent to neglecting the ellipticity of the motion of the moon
about the earth. The effect of time-dependent (or k) terms in the Fourier expansion of P
is illustrated in the trajectories of Figures 2 and 3. In Figure 2, the trajectory obtained by
normalization, using as parameters k =0, N =3, departs noticeably from the numerically
integrated trajectory by the 17th day. In fact this normalized curve is identical to the
trajectory obtained by numerically integrating the circular restricted three-body equations.
By contrast, in Figure 3, the curve obtained by normalization, using as parameters k =1,
N = 3, does not depart from the numerically integrated trajectory until the 30th day,

approximately. Very little increase in accuracy is gained by retaining terms containing

k=2,
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in the vicinity of the libration point L,, the time dependence is more prominent than the

4
effect of nonlinear terms. The marked difference between the normalized trajectories of

Figures 2 and 3 is not at all evident when comparing the normalized trajectories of Figures
3 and 4. In both of the latter curves, k = 1; only the order of normalization is different,

and the resulting trajectories are almost identical.

These effects of time dependence and order of normalization are apparently unchanged if
the motion is expanded to a neighborhood about L4 which is ten times the size of the
neighborhood observed in Figures 2, 3, and 4. This is evident in the trajectories of Figures
5, 6, and 7. Our earlier statement about gaining little increase in accuracy by retaining

terms containing k = 2, is also true in the larger neighborhood.

Before discussing the sources of errors in the normalized trajectories, we will conclude this
section by pointing out two principal reasons for using the normalization procedure. First
&f all, of course, is the fact that the normalization process gives us approximate analytic
solutions of the dynamical system. The approximate trajectories are expressed in terms of
power series with known coefficients. Thus the motion of a particle or space vehicle can
be studied analytically and the position and velocity computed for any instant, without
having to compute the prior history of the particle. Qualitative behavior of the particle
can be studied easily, to see the effects of changes in initial conditions. Secondly, be-
cause the independent variable appears explicitly in the normalized solution, the time re-
quired to compute normalized solutions is much less than the time required to compute
corresponding trajectories by numerical integration of the equations of motion. In the
normalized trajectories shown in the Figures 2-7, positions were calculated at 4-day in-
tervals. Total computation time for the 80 days took about 3/4 of a minute, with varia-
tions of 10 seconds or so for different parametric (k, N) conditions. By contrast, numer-
ical integration of each trajectory required from 4 to 11 minutes, depending upon the step
size used in the integration. In these trajectories we found little difference in accuracy
between step sizes of 3 hours (11 minutes total integration time) and 10 hours (4 minutes
total itegration time). This type of comparison must be made prior to carrying out exten-
sive numerical integration, and is time consuming in itself. And of course if we desire

to know only the location of the particle at the end of 30 days, for example, we need




make only one calculation with the normalized equations. By numerical integration, we

have to proceed step-by-step starting from the initial position.
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1V.3 Error Sources

Even with time dependence and nonlinear effects included, the normalized solutions we
have obtained ultimately diverge from the numerically integrated trajectories. This is be-
cause of truncation and round-off errors which occur at various stages of the normalization

process.

1. The Birkhoff Normalization technique for solving the differential equation generated by
a Hamiltonian system in the neighborhood of an equilibrium point requires that the Hamil-
tonian be expanded about that point, in terms consisting of state variable polynomials. [t
is at this point that new errors are introduced because of a number of factors:

a) The Hamiltonian is expanded in terms of polynomials of state vector components.

This expansion must be truncated.

b) For time-dependent Hamiltonians (elliptical restricted three-body problem), the
time-dependent contributions must be expanded in periodic functions and trun-

cated.

2. Second order normalization for a time-dependent Hamiltonian involves a number of
sequential processes. These processes are:
a) Numerical computation of eigenvalues, producing round-off error.
b) Use of a finite recursive technique to solve a system of linear time-dependent
differential equations,which requires truncation. The solution to the equation
is composed of periodic functions, whose coefficients are computed numerically.
A great deal of numerical manipulation is required, hence the problem of round-

off is significant.

3. As a result of each level of higher order normalization, a generating function and its
corresponding transformed Hamiltonian is produced. The coefficients of terms in the
generating functions and new Hamiltonians are subject to round~off error. Also, in the
computation for the coefficients of terms in the new Hamiltonian, a small divisor is present
which forces these numbers to become large. As a result of this division, the normalization

can only be implemented for a limited number of orders.




4. The higher order normalization process yields generating functions, each of which
implicitly relates two sets of coordinates. It is necessary to obtain explicit relations be-
tween these two coordinate sets. There are two techniques available for this purpose,

namely:
a) numerical iteration
b) symbolic expansion,

The first of these does not produce algebraic functions relating coordinates, which is one
of our objectives, so the second technique was studied here. This method does introduce

truncation as well as round-off errors. The truncation errors can become excessive.

5. As a result of inverting each generating function the explicit representation of coor-
dinates is available. The functions relating coordinates are combined to obtain one al-
gebraic transformation to and from the original and final set. This computation is another

source of round-off error.

6. The algebraic solution is a set of large time-dependent polynomials which have to be

evaluated for each trajectory point. This evaluation again introduces round=-off error.

To determine the relative magnitude of the errors due to these various sources, would re-

quire a systematic study which is beyond the scope of this report.

PR/HJF
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